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A b s t r a c t  

A simple and quite general method is developed for calculating critical para- 
meters from power series expansions. The series coefficients of the problem func- 
tion are introduced into a properly parametrized recurrence relationship. As a 
result, sequences are obtained that converge towards the critical parameters 
characterizing the closest singularity to the origin. The low-temperature series for 
the thermodynamic functions of spin-l/2 Ising models are discussed. Results are 
shown for the interfering, nonphysical singularities of the face-centred cubic and 
body-centred cubic lattices. The determination of these singularities would allow 
their factorization previous to the study of the physically important ones. 

1. I n t r o d u c t i o n  

The study of critical phenomena has attracted a great deal of attention during 
the last century. However, the development of a unified and sound theory to analyze 
such phenomena is, comparatively, a recent achievement (see ref. [1] for a review of 
the historical development and present status of the theory). 

Phase transitions appear in different types of systems. For instance, in solid- 
state physics, magnetic transitions are of particular interest, whereas fluid-solid phase 
transitions are relevant to different areas of  physics and chemistry. In this paper, we 
are concerned mostly with the first class of phenomena. However, both can be related 
owing to the existence of  symmetries between changes of  magnetic state and changes 

of  aggregation state [2]. 
In order to analyze theoretically any of  the above phenomena, one must first 

propose a model for them. Spin-lattice models (including the so-called Ising, Heisen- 
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berg, and X - Y  models, among others) are a favorite tool to study magnetic transi- 
tions [3,4].  On the other hand, imperfect-gas continuum [ 5 - 8 ]  and lattice [9,10] 
models have been used to mimic the behavior of systems exhibiting condensation or 
solidification. In particular, the models with hard-core repulsive interactions [ 5 - 8 ] ,  
as well as Lennard-Jones  interactions ([11] and references quoted therein), seem 
to be useful in trying to interpret the real behavior. 

Critical phenomena are characterized by the occurrence of singularities in 
some thermodynamic functions or their derivatives. Let us consider one example, 
relevant to our discussion later on, to illustrate this point. Suppose that H is the 
Hamiltonian describing a system of N spins with a certain number,  say L, of  spin 
pair interactions. This Hamiltonian is an appropriate model to describe magnetic 
phenomena. In the case of the spin-1/2 Ising model, it is given by [3,4] : 

L N 

H = - J ~  oicr j - m h ~ .  o i ,  
(i]) i 

(1) 

where J is the spin-spin interaction strength (coupling constant), m the magnetic 
moment  of the spins and h a magnetic field that acts along the z direction. It is 
understood in eq. (1) that the spin interaction is only due to the z components.  In 
this sense, H is a one-dimensional Hamiltonian in the space of spin. Nonetheless, in 
general it is a d-dimensional Hamiltonian in real space (d ~< 3). This latter fact is 
fixed by the type of lattice in which the spins are located. The first sum in eq. (1) 
takes this detail into account: it runs over all L nearest-neighbor pairs of  spins in the 
lattice. The second sum is simply over all spins, and it describes their independent 
interaction with the field. The magnitudes a i take only the values + 1, and they describe 
the spin up and spin down states. 

The knowledge of  the Hamiltonian allows one to compute,  at least formally, 
the partition function Z [3,4,12] 

Z = tr e x p ( -  3H); 3 = 1/kT,  (2) 

where, as usual, k is the Boltzmann constant and T the absolute temperature. The 
evaluation of  all thermodynamic functions is in principle straightforward from eq. (2). 
Let us consider three of them, which are important  to our later discussion: the spon- 
taneous magnetization M 0 , the magnetic susceptibility X0, and the specific heat at 
constant field C h, all of them at zero-field intensity (h ~ 0). Their expressions are as 
follows [3,4,12] : 

M 0 = (1//3) 3 l n Z / O h  ] n = o = m ~ ( o i ) l n =  o , (3a) 
i 
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Xo = (1//3) a 2 lnZ/D2h Ih = o 

C h = k[ 32 a2 ln Z/32[ 3In = o, 

= Z %>lh = o ,  (3b) 

(3c) 

where ( . . . )  denotes the statistical expectation value. 
The occurrence of a phase transition is represented by the occurrence of a 

physical singularity, whose location is the same for all thermodynamic functions. 
Here, we understand by "physical singularity" the existence of a real and positive 
temperature T e (critical or transition point) where the singularity is located. If  f 
represents any of the above thermodynamic functions, its asymptotic behavior near 
the critical point T c can be expressed as follows: 

f .~ A ( f ) (T )  (1 - T / T )  a(f) + const, T < T ,  (4a) 

f -~ A'Cf)(T) (1 - Te/T)a'C'f) + const, T > T c . (4b) 

Equations (4) may correspond to branch points or poles in the real T semi-axis. 
The constants appearing in eqs. (4) are the critical parameters, and they are 

the most  important  constants in the theory of critical phenomena. The exponents a 
and a' are known as critical exponents,  and A(f)(Tc), A'(f)(Tc) are the critical ampli- 
tudes. 

Even though the location of the singularities is the same for all functions f, 
in general this is not the case for the critical exponents and amplitudes. Nevertheless, 
several conjectured relationships are supposed to be valid for them [2,3,13] : 

(i) Universality hypothesis: a ( f )  are only dependent on the dimensionality 
of  the lattice, i.e. they do not depend on its structure. 

(ii) Symmetry hypothesis: a ' ( f )  = a ( f ) .  
(iii) Scaling (and hyperscaling) hypothesis: some relationships are satisfied 

among several critical exponents and the dimension of the lattice, i.e. not 
all of  them are independent.  

It is clear that the verification of  these and other hypotheses requires the 
accurate determination of  the critical exponents. 

In certain cases, the computat ion of  critical parameters, which we discuss 
below, becomes a difficult task due to the fact that T = T c may not be the closest 
singularity to the origin. For example, the function A ( D ( T )  might possess singularities 
for complex values of  iv, whose moduli are smaller than T c. These are nonphysical 
singularities, but they are important  because they interfere in the location of the 
physical ones [3]. Studies have been carried out in the past about these interfering 
singularities on Ising models [ 1 3 - 1 7 ] ,  as well as Heisenberg [18] and X - Y  
models [ 19]. 
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The nonphysical singularities possess their own characteristic critical exponents 
and amplitudes. However, as they are not located on the real T axis, their determination 
requires the use of different techniques. In this paper, we are concerned essentially 
with this problem. 

Two different approaches have been developed to determine the critical 
parameters characterizing the singular points: the analysis of power series expansions 
and the renormalization group theory [3,4,13]. These methods lead to independent 
results. 

The method based on power series expansions is easily justifiable and it has 
been extensively used. Its essential purpose is to express In Z as a series in powers of 
some function of temperature. Several procedures have been developed to obtain 
such expressions, and the use of graph-theoretical techniques has shown to be valuable 
in computing the contributions of many-body interactions [3,4]. These expansions 
are, of course, the equivalent to the virial series in the theory of fluids. 

After applying this method, we obtain a Taylor series representation of the 
thermodynamic functions [eqs. (3)]. Consequently, the critical parameters have to 
be determined only from a finite number of Taylor coefficients, and a number of 
methods are available to that purpose [3,4]. 

The RGT is based, on the other hand, on speculative, though reasonable, 
physical suppositions [4,13,20,21 ]. This theory predicts several scaling relationships 
among critical exponents. However, it is difficult to verify them numerically within 
the context of the theory. Due to this, a large comparative study of this method and 
the procedure based on power series expansions has been carried out in order to test 
the RGT conclusions. 

High- and low-temperature (with reference to the physical critical point To) 
series (HTS and LTS, respectively) have been widely used in studying magnetic phase 
transitions in spin-lattice models. The HTS are most often taken into consideration, 
because the singularity pattern is simpler in that temperature range [3]. Owing to this, 
a number of methods that are successful when dealing with HTS [3,4] do not apply 
to LTS. This is mainly due to the fact that the convergence radius of the LTS is 
frequently determined by the above mentioned nonphysical (i.e. non-real) singular 
points [3 ,14-17] .  However, valuable information is obtained from both series. As 
a matter of fact, the comparison of the critical behavior of functions given by eqs. (3) 
when approaching from the left and from the fight to T c enables one to test the RGT 
results (such as the symmetry hypothesis). Although the physical singular point at 
T c is the one that really matters, it is often useful to calculate those that determine 
the LTS convergence radius. Even an approximate determination of these singular 
points often allows one to improve the computation of the physical singularity [ 18,19]. 

One of the purposes of the present paper is to obtain the critical parameters 
characterizing the singular points of the thermodynamic functions in the range of 
temperatures smaller than T c. To this end, an alternative method is developed in 
sect. 2 and applied to a simple test example. The LTS for two spin-1/2 Ising models, 
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namely, the three-dimensional face-centred cubic and body-centred cubic lattices, 
are considered in sect. 3. A strategy is suggested for the determination of  the critical 
parameters characterizing all interfering singularities, without previous estimation 
of  the physical singularity. Even though we are mostly concerned with the study of 
spin-lattice models, we show that the present method applies to a large class of di2- 
ferent problems. Conclusions are found in sect. 4. 

2. T h e  m e t h o d  

Let f ( z )  be a function of the complex variable z = x + iy with the following 
properties: f ( z )  is analytic at z = 0 and f ( x )  is real. Therefore, every singular point of 
f ( z )  is either a real or complex conjugate of another one and all the coefficients of  
the Taylor series, 

o~ 

f(z)  = Z f, z", (5) 
n = O  

are real. We are interested in the case where the convergence radius of (5)is determined 
by a pair of complex conjugate singular points, say z o = x o + iy o and z o = x o -  iy o. 
The moduli of  the other singularities of  f ( z )  are supposed to be larger than Izol and 
the form of  f ( z )  close enough to z o or z o is assumed to be approximately given by: 

f ( z )  ~ F o + A(z  2 - 2 x  o z + x g + y o  2)a, (6) 

where F o and A are, in general, complex numbers and a is real. 
It is our purpose to develop a method for obtaining the critical parameters 

Xo, Yo (critical point),  a (critical exponent),  and A (critical amplitude), which 
characterize the singular points at z o and Zo, from the power series (5). The procedure 
is quite general and applies to all sorts of singularities (algebraic, exponential, and 
logarithmic [22] ), but  is enough for our present aims of  considering only the above 
case. Others are treated similarly, as shown in sect. 3. In the particular case of algebraic 
singularities, the asymptotic form given by eq. (6) would be equivalent to repre- 
senting f ( z )  by a truncated expansion about a branch point or pole [22,23]" 
f ( z )  ~ F o + Fl (z  - Zo) a. In this latter instance, we would find: A = F1/(z o --Zo) a 
[cf. eq. (6)] [23].  

The asymptotic form of  the Taylor coefficients fn is certainly determined by 
the singular points at z o and z o. Therefore, it is expected that the large-n behavior 
of  fn will equal that of  the Taylor coefficients for the function in eq. (6). A similar 
assumption is also the basis of  the widely accepted ratio method [3]. 

In order to calculate the critical parameters, we define the generating function 
(from now on, our procedure will be called generating function method,  GFM) 
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Y(z )  = B ( z  2 - 2wz  + r2) b, (7) 

where B, w, r 2 , and b are adjustable real parameters. The Taylor coefficients of Y(z)  
obey the following recursion relationship 

( n - 2 b - 1 )  Yn_, + 2 w ( b i n )  Yn +(n+l)r 2 Yn+l = O, (8) 

where Y0 = Br2b and Yn = 0 if n < 0. As argued before, it is expected that the 
Taylor coefficients fn satisfy (8) for large enough n values provided b = a, w = x0, 
and r 2 = x~ + y~ .  Therefore, to obtain the actual critical parameters we merely 
replac~ Y/by fj in eq. (8) for n = N, N + 1, and N + 2, and then solve for b, w, and 
r 2 . The sequences bN, WN, and r~¢ so obtained must converge towards a, x0, and 
x~ + y2 ,  respectively, as N tends to infinity. The GFM reminds one of  the "n-point 
fit method"  [3,17] (related to the Pad~ approximants), but  they are not equal. The 
latter makes use of a different linearization procedure, and its applications have 
explicitly taken into account the singular points outside the convergence circle. On 
the other hand, the GFM requires only the knowledge of the form of  f ( z )  near the 
closest singularity to the origin, and even this information can be obtained by trial 
and error. 

A straightforward algebraic manipulation shows that  the GFM sequences are 
given by [23]: 

w~v = A(WNIUN)I A(VNIUN) , (9a) 

= A(Wu/Vu)  / A(U /Vu) , (9b) 

b N = [2WNQ N { (N+  1)2QN+I/(N+ 2)QN+ 2 - N }  

+ N ( N +  1) QN/(N+ 2) QN+2 + N -  1 ] / [ 2 -  2 ( N +  1 ) Q N / ( N +  2) QN+2 

+ 2WNQ N { (N+  1 ) Q N + I / ( N +  2)QN+ 2 - 1 }] , (9c) 

where U N = 2(b N - N ) ,  V N = (N  + 1)Q N, W N = ( 2 b N - N  + 1)/QN, QN = f N / f N - , '  
and A P  N = PN+ a - PN" Upon substituting (9a) into (9c), we obtain a quadratic 
equation for b N with only one acceptable root (the other one leads either to a 
divergent b N sequence or to negative r~r values). 

The method is flexible and enables one to profit from available useful informa- 
tion about the problem function. For example, if the value of  the parameter a is 
known beforehand, we can simply use eqs. (9a) and (9c) with b N = a. This certainly 
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improves the results and has recently proved to be useful in dealing with the perturba- 
tion series for some periodic eigenvalue problems [23]. Besides, it is a well-known fact 
that the critical point can always be much more accurately calculated than the critical 
exponent. We can therefore make use of  a previous estimate of  the former and calculate 
the latter through eq. (9c). This may be advantageous, as shown later. 

The critical amplitude A can also be calculated provided it is real. Since 
Yn(w, r 2, b, B) = B Yn(w, r 2, b, 1), the sequence 

: 1), (10) 

is believed to converge towards A as N increases. When A is not  real, then B N is 
found to be oscillatory. 

Let us illustrate the above ideas with a test example. Consider, for instance, 
the following implicit equation: 

z 2 + z  = f ( z )  exp{ f (z )+l}  , (11) 

that defines a function f ( z )  with the required properties. In fact, f ( z )  has a pair of  
conjugate branch points of  order one [22], given by the roots of  dz/df = 0. It can 
easily be shown that in a small vicinity of either z o = ( - 1 + 31/20/2 or z o, the 
function f ( z )  behaves approximately as 

f ( z )  ~ - 1 + 21/2(1 + z + z2) W2. (12) 

This example is non-trivial in the sense that the Taylor coefficients fn do not reach 
the asymptotic form for finite n values. In addition, a very large number of  Taylor 
coefficients can be easily calculated, which enables one to test the convergence of the 
GFM sequences. 

Table 1 shows that the .GFM sequences approach the actual critical parameters 
in a stepwise manner, due to which direct extrapolation is not advisable. It is prefer- 
able to deal with the three subsequences with subscripts n + 3j, j = 0, 1, 2 , . . .  , 
where n = m, m + 1, m + 2, that are much smoother. After extrapolating them 
versus 1/j and averaging the three limits for each critical parameter sequence, we 
obtain a = 0.4999 -+ 10 -4, x o = -0 .50000  -+ 10 - s ,  Izol = 1.00000 + 10 - s ,  and 
A 2 = 1.99 + 0.02, which closely agree with the actual values. 

The high accuracy obtained in this case is certainly due to the fact that a very 
large number of  Taylor coefficients have been used. In most physical applications, 
we will not be so fortunate and much less accurate results are to be expected. The 
most important fact is that this numerical example and many others not shown here 
(see ref. [23]) suggest that the GFM sequences are always convergent provided that 
the appropriate generating function is chosen. 
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Table 1 

Critical parameter sequences for the function f(z) def'med by eq. (11) 

N - w  N r N b N B N 

292 0500004726 1.00001754 0.492582 1.35999 
293 0499998743 1.00000562 0.496018 1.38407 
294 0499982032 0.99997242 0.505647 1.44280 
295 0.500004630 1.00001718 0.492658 1.36043 
296 0 . 4 9 9 9 9 8 7 6 8  1.00000550 0.496059 1.38432 
297 0.499982402 0.99997299 0.505587 1.44257 
298 0500004536 1.00001683 0.492732 1.36085 
299 0 . 4 9 9 9 9 8 7 9 3  1.00000539 0.496098 1.38456 
300 0.499982760 0.99997354 0.505529 1.44235 

3. S p i n - l / 2  Is ing m o d e l s  

The spontaneous magnetization Mo, the magnetic susceptibility ×0, and the 
specific heat C h in the zero-field limit [see eqs. (3)] for the spin-l/2 Ising models can 
be expanded in powers of u = exp( - 4 J / k T ) ,  where J is the spin-spin interaction 
[cf. eq. (1)]. A quite large number of Taylor coefficients are available for thefcc and 
bcc lattices (ref. [3 ],  ch. 6 ), which we discuss as illustrative examples in this paper. 

As mentioned before, the critical point is the same for all thermodynamic 
functions, but the critical exponents a (M 0), a (Xo), and a (Ch) [eqs. (4)] are different. 

Our purpose in this section is to discuss a possible strategy to determine the 
closest singularities to the origin in the thermodynamic function, using the method 
discussed in sect. 2. Our aim is to analyze how well these singularities can be located 
without using a biased input for the physical singular points. The proposed procedure 
has the advantage of allowing one to focus attention only on a restricted set of  Taylor 
coefficients. By only considering those of  largest order (i.e. those fixing the asymp- 
totic behavior), one might find a best approximation to the dominating, nonphysical 
singularities. On the other hand, direct, unbiased application of  Pad~-like methods 
requires the use of  all Taylor coefficients to end up with a not very reliable simultane- 
ous approximation to all branch points and poles. 

One would like to determine in the first place these interfering singular points. 
Proceeding this way, it is possible to factorize them from the original function and 
then to accomplish the study of the physical singularities. Another alternative method 
would be to use a conformal mapping to map the dominating (nonphysical) branch 
points outside the convergence disk [3,18,19].  Several procedures are available to 
perform this transformation, and we think that the present method could serve as a 
complementary tool. 
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Let us start with the critical exponent sequences for the above mentioned 
thermodynamic functions corresponding to the bcc lattice. First, we try to determine 
which function is more appropriate to accomplish the analysis. In other words, we 
determine for which function the sequences associated to the nonphysical singularities 
are smoother. 

We find that,  in general, all the sequences for a(Mo), a(Xo), and a(Ch) are 
strongly oscillatory, and with no clear trend. This is a common characteristic of 
functions possessing a strong interference of singularities, and it has already been 
found even when using procedures based on a previous factorization of the physical 
singularity [ 3 , 1 4 - 1 7 ] .  However, we notice that the oscillation in the sequences is 
not  the same for all thermodynamic functions. For instance, upon averaging the 
results for the last five terms (23 <~ N ~< 27), we find: b(Ch) = - 1 . 0  + 0.6, 
b(Mo) = 0.4 + 2.5, and b(Xo) = - 0 . 4  + 4.2. It is clear that no reliable estimation can 
be obtained for the critical exponents of the spontaneous magnetization and mag- 
netic susceptibility using this first simple approach. Nevertheless, a crude first esti- 
mation of the exponent corresponding to the specific heat can be made. 

It is worth commenting that this result shows that the GFM provides an 
approximation different to that obtained when using other techniques, which provide 
the least accurate results for a(Mo) and a(Ch). This fact can be explained as follows: 
the most reliable calculations suggest that a(Ch) is larger than a '  ~ 1/8, a(×o) is 
similar to 3" ~ 21/16, and a(Mo) is smaller than/3 ~ 5/16, where a ' ,  3", and/3 are the 
respective critical exponents of the physical singular point. Therefore, the physical 
singularity is somewhat dominant in M o and the methods that factorize it are more 
successful in calculating a (M o ) than in calculating either a (Xo) or a (C h). On the other 
hand, we try to obtain the critical parameters of  the nonphysical singularities directly, 
and for this reason we find it easier to deal with the LTS for C h that is dominated by 
those singular points. 

As discussed above, we start our analysis with the specific heat power series. 
Of course, our aim is to obtain the critical parameters characterizing all three thermo- 
dynamic functions. To that end, we propose to pursue the following strategy to study 
different lattices: 

(i) determine the approximate location of the pair of dominating complex 
singularities of  the bcc lattice, using the C h LTS; 

(ii) obtain error bounds for t h e  (nonphysical) critical exponents of other 
thermodynamic functions from the range of  b values where the location of the singu- 
larity remains within the interval found in (i); 

(iii) if a lattice possesses more than two complex interfering singularities, start 
the analysis again with the C h LTS but  considering the critical exponent of the bcc 
lattice transferable (extension of the symmetry hypothesis). 

In what follows, we discuss an application of the above procedure to two 
spin- 1/2 Ising models. 
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As mentioned above, we found a first estimation a(Ch) -~ b(Ch) = - 1.0 --+ 0.6 
for the bcc lattice. In the same way, the sequences w N and r~¢ for C h , which are con- 
siderably smoother, lead to the following estimates (see table 2): 

x o ~ -0 .233 + 0.007, Yo ~ 0.304 + 0.009, (13) 

which agree with x o .~ -0 .234  + 0.001 and Yo ~ 0.306 -+ 0.002 obtained through the 
Pad~ approximants built from the factorized LTS for M o [3,15,16]. It is worth 
mentioning that, in order to derive this latter result, a first estimation of the physical 
critical parameters is necessary, and to transfer them from M o to C n . We will use this 
result, together with (13), to provide the input data to develop the above mentioned 
strategy. 

Table 2 

Sequences for the location of the nonphysical singularities 
of the spin-l/2 Ising model on a bcc lattice. (Results using 
the LTS expansions for the specific heat capacity.) 

N - xo Y0 

23 0.24177 0.31544 
24 0.22624 0.29526 
25 0.22629 0.29532 
26 0.23709 0.30887 
27 0.23262 0.30289 

Estimates: x0 = - 0.233 -+ 0.007 Yo = 0.304 -+ 0.009 

A first rough estimate of  the exponents a(Mo) and a(Xo) can be performed 
from the result (13). Let us consider, for instance, the largest term (N = 2 7 ) i n  
the series expansions for the spontaneous magnetization. The parameter w27 
(or [(r27) 2 - (w27) 2 ] 1/2) can be seen as a function of  the approximate exponent 
b27(Mo). Therefore, a reasonable confidence interval for the latter can be obtained 
under the constraint that w27 will take only values within the interval given by the 
equalities (13). Proceeding this way, we find a ( M o ) ~ - 0 . 1 5  + 0.75. A similar reason- 
ing leads us to a(Xo) ~ - 1.05 -+ 0.75 for the magnetic susceptibility. It is clear that 
these results are not outstanding in accuracy; however, they represent a large improve- 
ment with respect to the previous estimates from the sequences, and they suggest 
a procedure to provide even better ones. 

Beating in mind the previous analysis, we proceeded to improve our results by 
determining the largest and smallest b value giving rise to critical-point sequences 
whose last ten terms agree, within the error bounds, with the estimates given above. 
We have performed the computations with the estimates (13) and with the more 
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accurate ones given in refs. [3,15,16].  The results do not show significant differences, 
even though the confidence intervals are obviously somewhat tighter in the second 
case. Furthermore, when the latter results for x o and Yo are used, one can also improve 
the estimate of  exponent a(Ch). Following the above procedure, we thus obtain: 
a(C~) ~ - 1.12 + 0.02, a(Mo) ~ -0 .11  + 0.03, a(Xo) ~ - 1.10 + 0.02, that appear to 
be more accurate than those reported previously [ 3 , 1 4 - 1 7 ] .  

According to the strategy already discussed, one may use the  critical para- 
meters obtained from the bcc lattice to study a different one, for instance the fcc 
lattice. This is consistent with the universality hypothesis, supported by extensive 
numerical evidence. In our particular case, we will use the bcc critical exponents 
computed before in calculating the critical point for the fcc lattice. 

When one uses the generating function (7) with b = a for the fcc lattice, the 
sequences are found to be wildly oscillatory. This represents a distinguishing feature 
between the two models. This behavior cannot have any relation with the transference 
of  critical exponents between both lattices, which is in fact our main supposition. 
Accordingly, it should be due to the effect of  some other interfering singular points. In 
other words, the generating function must be improved in order to describe the model 
properly. The method presented in sect. 2 can be immediately adapted to this new 
situation, as shown below. 

The critical exponents of  different singularities are not expected to be equal 
[3,15,16].  However, since the estimation of  the critical point does not depend too 
strongly on the chosen critical exponent, we can try, in first approximation, the 
following generating function: 

Y ( z )  = B ( c  0 + c 1 z +  c 2 g2 + c 3 z 3  + z4 )a  . (14) 

Its Taylor coefficients satisfy the relation: 

(n + 1)c o Yn+l + ( n - a ) c l  Yn + ( n - 2 a - 1 ) c 2  Yn-1 + ( n - 3 a - 2 ) c  3 Yn-2  

+ ( n - 4 a - 3 ) Y n - 3  = 0 .  (15) 

Upon solving all the sets of  four linear equations generated by  (15), with 
Yj = f / a n d  n =N, N + 1, N + 2, and N + 3, we obtain the sequences c (N), m = O, 1, 2, 
and 3, N = 3, 4 . . . . .  Once again, those for C h (displayed in table 3) are found to be 
the smoothest ones. By averaging the last ten results obtained with a = - 1.14 and 
a = - 1.10 (vide supra), we estimate: c o ~ 0.0803 +- 0.0003, c I -~ 0.218 -+ 0.001, 
c 2 ~ 0.436 + 0.002, and c 3 ~ 0.746 -+ 0.002. The singular points, given by the four 

aV ~t 
roots of  Y(z)  = 0, are found to be z o, z o, z 1 , and z I , where: 
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Table 3 

Location of dominating singularities of the spin-1/2 Ising model on an fcc lattice: se- 
quences for the coefficients c i ofeq. (14) from the C h LTS. (Results for a = - 1.12) 

N e~ N) c} N> c~ N) c~ N) 

30 0.080450 0.21852 0.43918 0.75647 
31 0.078816 0.21350 0.42970 0.73766 
32 0.081070 0.21712 0.43435 0.74435 
33 0.080325 0.21822 0.43533 0.74390 
34 0.080377 0.21730 0.43718 0.74578 
35 0.080168 0.21681 0.43477 0.74640 
36 0.080098 0.21632 0.43369 0.74233 
37 0.080605 0.21758 0.43568 0.74535 
38 0.080248 0.21736 0.43560 0.74497 
39 0.080289 0.21700 0.43553 0.74524 
40 0.080260 0.21698 0.43887 0.74487 

z o ~ {-0.4465 + 0.0015} + {0.279 + 0.005}i, (16a) 

zl -.~ {-0.0733 + 0.0006} + {0.533 + O.O01}i. (16b) 

The two pairs of  conjugate singularities interfere very strongly because Iz0l 
= 0.527 + 0.003 is very close to Izll = 0.538 + 0.001. Present results seem to be some- 
what more accurate than those reported previously [ 3 , 1 5 - 1 7 ] ,  which in some cases 
take into account two different exponents [ 15,16]. This fact confirms our assumption 
that the choice of the critical exponent has no strong effect on the estimated critical 
point, and that in fact it can be transferred between different lattices, disregarding 
the number of dominating singularities. It is supposed that a more elaborate generating 
function could lead to more accurate results. 

The present estimates of the critical parameters for the nonphysical singu- 
larities in the spin-l/2 Ising models on lattices bcc andfcc can be used to improve 
the results for the physical singularities. As commented before, a conformal mapping 
can be used to map present singularities outside the convergence disk (see, for example, 

the method in refs. [18,19] ). 

4. Further comments  and conclusions 

A method for obtaining critical parameters from power series expansions has 
been presented. Although examples with complex conjugate singular points nearest 
to the origin only have been treated here, it is clear that the GFM can be applied to 
a larger class of  problems. For instance, the generating function B(1 - z/w) b proves 



F.M. Fernfindez et al., Critical parameters from power series expansions 279 

to be useful when the convergence is determined by an isolated real singularity, in 
which case the ratio method equations [3] are obtained. In addition, the generating 
functions discussed in sect. 3 are also suitable when there are real singular points. 

Both the Pad~ approximants [3,15,16] and the GFM are general and in some 
cases they appear to be complementary. In fact, it has been shown in sect. 3 that 
while the Pad~ approximants yield the most accurate results for Mo, the GFM is 
most appropriate to deal with the C h LTS. Furthermore, they provide independent 
results because the GFM is always applied without previous factorization of  the 
physical critical point. As a conclusion, we deem that the method and strategy dis- 
cussed in this paper to study spin-lattice models might be valuable in obtaining a more 
reliable set of  critical parameters. Moreover, it may also be used to check the validity 
of  the confidence intervals estimated for these parameters. 

Finally, present and previous numerical investigations [23] suggest that the 
GFM can be fruitful as a tool in series analysis. 
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